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Abstract—In this study, travelling wave solution of variable –coefficient Burgers equation is extracted using variable-parameter tanh 
method.  Implementing this method, the used parameters are assumed to be functions of time. The solutions are found to be of hyperbolic 
type. For some special values of the parameters, the solitary wave solutions are found. Two particular solutions for some specific values of 
the parameters involved are plotted as illustrative examples. The approach used in this study is found to be effective and can be 
implemented in solving various nonlinear evolution equations with variable coefficients. 

Index Terms— Burgers equation, Nonlinear evolution equation, Travelling wave, Variable- parameter tanh method, Solitary wave, Over-
determined differential equations, Analytic solution.   
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1 INTRODUCTION                                                                     

ON-linear evolution equations (NLEEs) are nonlinear 
partial differential equations (PDEs) having both spatial 
and time derivatives arising in modeling nonlinear phys-

ical phenomena that evolve over time. Basically, they are spe-
cial types of PDEs and most of them have no analytical solu-
tions. From the last few decades, NLEEs are studied more in 
seeking their exact solutions due to having availability of some 
symbolic computational software such as Maple, Mathemati-
ca, Matlab [1]. Recently, several analytical tools such as inverse 
scattering method [2], Hirota bilinear method [3], Painleve 
expansion method [4], sine-cosine method [5], homogeneous 
balance method [6], homotopy perturbation method [7-9], 
Adomian decomposition method [10], tanh function method 
[11-16], F-expansion method [17-21], exp-function method [22, 
23], auxiliary equation method [24], ( )GG′ -expansion meth-
od [25-31], simplest equation method [32], etc. have been de-
veloped in searching analytical solutions of NLEEs. Most of 
the aforementioned methods are developed due to solve 
NLEEs with constant coefficients using constant parameters. 
Recently, in some studies such as [16, 29, 33-36], it is found to 
be used variable parameter method in solving variable coeffi-
cient NLEEs. In [29, 33], variable coefficient KdV equation is 
solved using variable parameter ( )GG′ -expansion method. 

These studies make our interest to see the solution of NLEEs 
with variable coefficients using variable parameter tanh meth-
od. It is to be mentioned here that tanh method was intro-
duced in Huibin and Kelin [37] and further development was 
made through several studies [38-43]. In all of the mentioned 
studies, the constant coefficient NLEEs are solved using con-
stant parameter tanh method. It is to be mentioned at this 
junction that Tian et al. [44] in his study claimed that ‘the gen-
eralized tanh method can be extended from the situation with 
coefficient constants to that with coefficient functions’. Keep-
ing this idea in mind, Zhang and Zhang [16] used variable 
parameter tanh method in solving Burgers equation with vari-
able coefficients. In the present study, we intend to solve Burg-
ers equation with variable coefficients with variable parameter 
tanh method.  
The rest of the paper is organized as follows. In section 2, the 
method is discussed briefly, section 3 deals with the imple-
mentation of the variable-parameter tanh method in solving 
variable–coefficient Burgers equation with variable coeffi-
cients. Discussion of results and conclusion are presented in 
section 4. 
 
2. A BRIEF DESCRIPTION OF THE METHOD 

A NLEE with state variable )(Xu , where  ),,,( tzyxX =  
can be defined in following form: 

0.)..,,,,,,,,,,,,( =zzyyxxttztytxtzyxt uuuuuuuuuuuuF , 

(1)  
where the suffixes indicate derivatives. 
The solution of Eq. (1) can be expressed as a polynomial of 

)tanh(X  as follows: 
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i
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where )tanh(ξ=Y  while )(Xξξ = , ),,,( tzyxXX =  
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represents independent variable and the coefficients of the 
polynomial niti ...,,2,1),( =α  are assumed to be func-

tions of time instated of constants. The consideration 
)tanh(ξ=Y  leads to take the differential operators in follow-

ing forms: 
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 and so on. 

To determine )(Xu  explicitly, it is required to follow the fol-
lowing steps: 
Step 1. Determine the value of n  by homogeneous balancing 
between highest order derivative and nonlinear terms present 
in the NLEE characterized by Eq. (1). 
Step 2. Substitute Eq. (2) in Eq. (1) and collect the coefficients 
as an order of Y . Thus a polynomial will be obtained with Y .  
Equating the coefficients of the polynomial to zero, a system of 
over-determined differential equations with 

niti ...,,2,1),( =α  and ξ   is obtained. 

Step 3. Solve the system of over-determined differential equa-
tions obtained in Step 2 for getting the values of parameters 

)(tiα   and ξ   by using the symbolic software Maple, Mathe-

matica or Matlab. 
Step 4. Use the computed values of the parameters in Eq. (2).  
Then the exact travelling wave solution of the given NLEEs 
characterized by Eq. (1) will be obtained. 
 
3. IMPLEMENTATION OF THE VARIABLE PARAME-

TER TANH METHOD IN SOLVING BURGERS 
EQUATION 

Burgers equation is one of the simplest NLEEs which is named 
after Burgers that arose in studying turbulence in 1939 [45].  
The one dimensional variable coefficients Burgers equation 
can be written as [33] 

0)()( =+− xxxt uutautdu ,          (3) 

where )(td  and )(ta  are functions of time. 
After balancing between highest order derivative and nonline-
ar terms present in Eq. (3), we have 1=n . Thus Eq. (3) has 
the solution having the following form: 

0)(,)()( 110 ≠+= tYttu ααα ,                        (4) 

where )tanh(ξ=Y  stratifying Eq. (3) with 
)()( tqxtp +=ξ  while the functions )(tp  and  )(tq  are to 

be determined. 
Equation (3) turns into a polynomial of Y  with the help of Eq. 
(4). Equating the coefficients of order of Y  to zero, the follow-
ing set of over-determined differential equations is obtained: 
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Solving the system of over-determined differential equations 
represented by Eq. (5), we have the following values of the 
parameters: Ptp =)( , Qt =)(0α , Rt =)(1α , 

R
Ptdta )(2)( −=  and ∫=

t

dt
R

tdQPtq
0

2 )(2)( , where QP,  

and R  are arbitrary constants. 

Thus )(tqPx +=ξ , where ∫=
t

dt
R

tdQPtq
0

2 )(2)( .  

Now substituting the computed values of the parameters in 
Eq. (4), it turns into the following form:   









++= ∫

t

dttd
R

QPPxRQtxu
0

2

)(2tanh),( .          (6) 

This is the obtained solution of the variable coefficient Burgers 
equation represented by Eq. (3).  
 
4. RESULT DISCUSSION AND CONCLUSION 
In this study, the variable parameter tanh  method is used in 
solving one dimensional variable coefficient Burgers equation. 
The obtained result is found to be similar with one of the re-
sults obtained in [33]. If it is assumed that the coefficients are 
constants then the computed result seems to be quite similar 
with the ones obtained in [46, 47]. The obtained solution sym-
bolized by Eq. (6) is a solitary wave type solution. The com-
puted solutions are also depicted in Figs. 1-4 for choosing dif-
ferent types of functions (constant, algebraic, exponential and 
trigonometric) for )(td  with the fixed values of other parame-
ters as illustrative examples. From the computed results, it can 
be pointed out here that for choosing any types of functions 
for )(td , the computed results were found to be of solitary 
wave type. However, the method used here is a more general 
approach in solving some NLEEs with variable coefficients. 
So, it can be an alternative approach in solving NLEEs with 
variable coefficients. 
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Fig. 1 Computed solutions for 1,1,1 === RQP  

where )(td  is a constant function ]1)([ =td . 
 
 
 
 
 

 
Fig. 2 Computed solutions for 1,1,1 === RQP  

where )(td  is an algebraic function ])([ 2ttd = . 
 
 

 

 
Fig. 3 Computed solutions for 1,1,1 === RQP  

where )(td  is an exponential function ])([ 2tetd −= . 
 
 
 
 
 

 
Fig. 4 Computed solutions for 1,1,1 === RQP  where 

)(td  is a trigonometric function ]sin)([ ttd = . 
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